Padabenda akan bekerja gaya gesek (fg) yang arahnya berlawanan dengan arah gerak benda. Bila kita membuka Kembali konsep mengenai gaya gesek, maka akan diperoleh persamaan gaya gesek adalah: 𝑔= Dengan, adalah koefisien gesek dan N adalah gaya normal. Perhatikan gambar berikut, bila kita gaya yang bekerja pada benda dianalisis: N
Mahasiswa/Alumni Institut Teknologi Sepuluh Nopember Surabaya12 Juni 2022 0250Jawaban yang benar adalah b. 2,0 m/s² Hukum II Newton menyatakan bahwa percepatan yang dihasilkan oleh resultan gaya yang bekerja pada suatu benda sebanding dengan resultan gayanya dan berbanding terbalik dengan massa bendanya. Hukum II Newton dirumuskan a = ΣF/m dengan ΣF = F1 + F1 + ... dimana a = percepatan m/s² ΣF = resultan gaya N m = massa kg F1, F2 = gaya-gaya yang bekerja N F1 bertanda positif jika arahnya ke kanan F2 bertanda negatif jika arahnya ke kiri Diketahui Misal F1 = 8 N F2 = 10 N F3 = –5 N F gesek = –5 N m = 4 kg Ditanya a = ..... Jawab a = ΣF/m a = F1 + F2 + F3 + F gesek/m a = {8 + 10 + –5 + –5}/4 a = 8/4 a = 2 m/s² Jadi, besar percepatan yang dialami balok adalah 2,0 m/s² Oleh karena itu, jawaban yang benar adalah b

b Setiap benda akan tetap diam atau bergerak beraturan (GLB) selama tidak ada gaya luar yang bekerja pada benda tersebut. c. Persamaan Hukum I Newton F = 0. B. Hukum II Newton . a. Percepatan yang dihasilkan oleh resultan gaya yang bekerja pada sebuah benda sebanding dan searah dengan resultan gaya dan berbanding terbalik dengan massa benda. b.

ilustrasi oleh Gaya gesek adalah suatu gaya yang berarah melawan gerak benda atau arah kecenderungan benda bergerak. Gaya gesek ini sering kita lakukan tanpa disadari, contohnya saat kita berkendara dan sesampai tempat tujuan kita akan menghentikan sepeda motor tersebut. Pengertian Gaya GesekJenis-jenis Gaya GesekRumus Gaya GesekContoh Soal Gaya Gesek dan Pembahasan Gaya gesek adalah gaya yang berlawanan arah dengan arah gerak benda. Gaya ini terjadi karena sentuhan benda dengan bidang lintasan yang membuat gesekan antara keduanya saat benda akan mulai bergerak hingga benda bergerak. Besarnya gaya gesek ini berdasarkan kekasaran permukaan kedua bidang yang bersentuhan, sehingga semakin kasar permukaan suatu bidang maka nilai gaya geseknya akan semakin besar. Sesuai pada hukum I Newton, pada balok kayu yang terletak di atas meja bekerja gaya normal yang berlawanan arah dengan gaya berat. Jika sebuah arah gerak benda mendatar maka besarnya gaya normal N sama dengan berat benda w. Saat sebuah balok kayu ditarik dengan tali, gaya yang diperlukan dalam jumlah tertentu. Hal ini disebabkan karena adanya gaya gesekan antara permukaan balok dengan suatu permukaan meja yang arahnya berlawanan dengan arah gerak balok. Gaya gesekan Fg yang terjadi ketika benda belum bergerak disebut dengan gaya gesekan statis Fs, sedangkan pada suatu gaya gesekan yang terjadi sesudah benda bergerak disebut dengan gaya gesekan kinetis Fk. Jenis-jenis Gaya Gesek Terdapat dua jenis gaya gesek yaitu Gaya Gesek Statis dan Kinetis. Berikut penjelasannya Gaya Gesek Statis GGS Gaya Gesek Statis adalah gaya yang bekerja saat benda diam hingga tepat saat benda akan bergerak. Sebagai contoh, GGS dapat mencegah kamu untuk tergelincir dari tempat kamu berpijak. GGS juga dapat mencegah benda meluncur ke bawah pada bidang miring. Persamaan GGS fs = Perhatikan gambar diatas untuk melihat arah-arah gaya. Karena setiap benda yang diam hingga tepat akan bergerak memiliki nilai GGS, maka benda tidak akan bergerak jika gaya yang diberikan lebih kecil dari nilai GGS karena arah gaya yang diberikan dengan arah gaya gesek selalu berlawanan. Gaya Gesek Kinetis GGK Gaya gesek kinetis adalah gaya yang bekerja saat benda bergerak. Saat benda diam hingga tepat akan bergerak, gaya yang berkerja adalah GGS. Lalu, saat benda mulai bergerak maka gaya yang bekerja adalah GGK. Rumus Gaya Gesek Rumus gaya gesek statis Fs = µs N Keterangan Fs = Gaya gesek statis µs = Koofesien gesekan statis N = Gaya normal Rumus gaya gesek kinetis Fk = µk N Keterangan Fk = Gaya gesek kinetis µk = Koofesien gesekan kinetis N = Gaya normal µk < µsFg = Fs atau Fk Besarnya koefisien gesekan kinetis adalah tetap. Contoh Soal Gaya Gesek dan Pembahasan Sebuah balok 10 kg diam di atas lantai datar. Koefisien gesekan statis μs = 0,4 dan koefisien gesekan kinetis μk = 0,3. Tentukanlah gaya gesekan yang bekerja pada balok jika balok tersebut ditarik dengan gaya F sebesar 40 N membentuk sudut 60o terhadap arah mendatar! Pembahasan Gaya-gaya yang bekerja pada benda diperlihatkan pada gambar di atas. Karena pada sumbu vertikal tidak ada gerak, maka berlaku FY = 0 Jawab Gaya normal N + F sin 60o – w = 0 N = w – F sin 60o N = mg – F sin 60o N = 10 kg10 m/s2 – 40 N ½ √3 N = 100 N – 20√3 N N = 65,36 N Gaya gesek statis fs = μs N fs = 0,465,36 N fs = 26,14 N Gaya tarik arah horizontal F = F cos 60o F = 40 N ½ F = 20 N Karena F < fs maka benda masih dalam keadaan diam. Oleh karena itu gaya gesek yang bekerja adalah gaya gesek statis sebesar fs = 26,14 N. 2. Sebuah balok es dengan massa 20 Kg tidak bergerak diatas lantai datar. Koefisien esekan statis benda tersebut sebesar µs = 0,4 dan koefisien gesekan kinetis nya sebesar µk = 0,3. Balok es tersebut dikenai gaya dengan ditarik sebesar 60 N dan membentuksudut 60o terhadap lantai. Maka berapa gaya gesek yang dialami balok es? Pembahasan Diketahui m = 20 Kgµs = 0,4µk = 0,3F = 60N Karena pada sumbu Y benda tidak bergerak maka ∑Y = 0 Jawab Gaya normal N + F. sin 60o– w = 0 N = w – F. sin 60o N = – F. sin 60o N = 20 Kg. 10m/s2 – 60. 1/2√3 / N = 200 – 52,2 N = 147,8N Gaya gesek statis fs = fs = 0,4. 147,8 N fs = 59,12 N Jadi gaya gesek yang dialami balok es tersebut sebesar 59,12N. 3. Balok kayu bermassa 100 kg diletakan di lantai dan ditarik dengan koefisien gesek statis kotak dengan lantai 0,5. Berapa besar gaya gesek statisnya? Pembahasan Diketahui m=100 kgμs =0,5g= 9,8 m/s² Jawab fs= μs . N = μs . = 0,5 . 100 kg . 9,8m/s² = 490 N Jadi, Besar gaya statis nya yaitu 490 N Demikian ulasan tentang gaya gesek baik pengertian, rumus, conoth soal beserta pembahasannya. Semoga bermanfaat! Referensi Jikapercepatan gravitasi 10 m/s 2, maka energi kinetik bola pada ketinggian 2 m adalah A. 6,8 Joule. gaya gesek menahan gerak balok (gaya gesek melakukan usaha pada balok). Akibatnya, balok mengalami perlambatan dan akhirnya berhenti. maka usaha yang dilakukan gaya berat adalah. A. 10 sin 30° joule B. 10 cos 30° joule C. 10 sin Squad, jika kamu ditanya pelajaran apa yang paling susah untuk kamu kerjakan di SBMPTN pasti Fisika menjadi salah satunya bukan? Eits jangan khawatir, jika kamu rajin berlatih dengan menjawab dan menyimak pembahasan latihan soal SBMPTN Fisika pasti kamu semakin yakin saat mengerjakan nantinya. Nah kali ini, kita akan belajar soal SBMPTN Fisika dengan topik materi Hukum Newton dan Gaya Gesek. Selamat belajar, Squad! 1. Sebuah satelit yang bermassa 3000 kg dilepaskan dari muatan pesawat ulang-alik dengan bantuan pegas. Jika satelit dilontarkan dengan kecepatan 0,8 m/s dengan pegas dalam selang waktu 0,5 s, maka gaya rata-rata yang diberikan pegas pada satelit tersebut adalah…. Jawaban B Pembahasan Soal ini dapat diselesaikan dengan menggunakan konsep momentum-impuls. Di mana besarnya impuls setara dengan perubahan momentum. Sehingga 2. Sebuah bidang miring kasar membentuk sudut α = 600 terhadap sumbu vertikal. Suatu benda diletakkan di atas bidang miring tersebut dan benda tersebut diam. Berapakah nilai koefisien gesekan statis antara benda dengan bidang miring yang menyebabkan benda tersebut tertahan? Jawaban D Pembahasan Besarnya sudut yang dibentuk bidang miring terhadap tanah Pada sumbu y, berlaku Pada sumbu x, berlaku 3. Budi menuruni gunung menggunakan skateboard dengan kelajuan tetap, sehingga energi potensial berubah menjadi energi kinetik. SEBAB Energi kinetik berbanding lurus dengan kuadrat kecepatan. Jawaban D Pembahasan Peristiwa seseorang menggunakan skateboard menuruni gunung dengan laju tetap akan mengubah energi potensial menjadi energi kinetik dan usaha oleh gaya gesek. Bukan hanya energi potensial menjadi energi kinetik. Karena terdapat kontak dari skateboard dengan bidang permukaan yang menuruni gunung, maka ada usaha untuk melawan dari perubahan energi tersebut yaitu berupa usaha oleh gaya gesek pada skateboard. Sedangkan energi kinetik itu sendiri adalah energi yang dimiliki oleh benda yang bergerak dengan kecepatan tertentu, dirumuskan Energi kinetik berbanding lurus dengan kecepatan pangkat dua. Jadi, pernyataan salah dan alasan benar. Sampai sini, mulai paham kan mengenai Hukum Newton dan Gaya Gesek? Coba deh, pahami lebih dalam lagi materi ini dengan mengerjakan tes di bank soal Ruangguru! Ada ribuan soal yang bisa kamu kerjakan lengkap dengan penjelasannya yang mudah kamu pahami! Coba cek langsung dengan klik tombol di bawah ini ya! 4. Pada gambar di bawah, jika percepatan gravitasi dan katrol memiliki gaya gesek terabaikan, maka untuk mengangkat beban bermassa 25 kg ke atas dengan kecepatan tetap diperluan gaya sebesar…. 31,25 N 62,5 N 93,75 N 125 N 156,25 N Jawaban B Pembahasan Besar gaya adalah 5. Sebuah balok massanya 4 kg yang terletak pada bidang datar kasar diberi gaya konstan sebesar 20 N membentuk sudut terhadap bidang horizontal. Jika koefisien gesek antara balok dan lantai 0,4 maka besar kecepatan benda setelah 5 detik adalah…. 0 m/s 2 m/s 4 m/s 6 m/s 8 m/s Jawaban D Pembahasan Ilustrasi Komponen gaya pada sumbu-y Karena benda berada pada keadaan setimbang pada arah sumbu-y maka Komponen gaya pada sumbu-x Karena benda bergerak searah dengan arah gaya, maka Benda bergerak dengan percepatan Gunakan persamaan GLBB 6. Sebuah bandul massanya 0,4 kg diikatkan pada seutas tali yang panjangnya 50 cm massa tali diabaikan kemudian diputar sehingga melakukan gerak melingkar beraturan dalam bidang vertikal. Jika pada saat bandul mencapai suatu titik yang membentuk sudut sebesar terhadap arah sumbu-x positif kecepatannya 5 m/s, maka besar tegangan tali pada posisi tersebut adalah…. 20 N 22 N 24 N 26 N 28 N Jawaban B Pembahasan Ilustrasi Dari gambar di atas, arah gaya yang menuju pusat lingkaran bernilai positif. 7. Sebuah balok bermassa 2 kg terletak di atas lantai kasar mobil bak terbuka dengan koefisien gesek statis 0,4 dan koefisien gesek kinetis 0,1. Jika mobil bergerak dengan kecepatan 144 km/jam, maka jarak minimum yang ditempuh agar mobil dapat berhenti tanpa menyebabkan balok bergeser adalah…. 100 m 120 m 150 m 180 m 200 m Jawaban E Pembahasan Ilustrasi Karena balok tidak bergeser Maka jarak yang ditempuh mobil hingga berhenti 8. Dua buah benda bermassa 1 kg dan 4 kg dihubungkan dengan katrol seperti gambar. Bila setelah 1 detik bergerak tali putus, maka tinggi maksimum yang masih dapat dicapai benda 1 kg sebelum jatuh adalah…. 1,2 m 1,8 m 3,0 m 4,2 m 4,8 m Jawaban E Pembahasan Percepatan sistem Tinggi benda setelah 1 sekon Menurut Hukum I Newton benda yang bergerak akan mempertahankan geraknya, maka setelah tali diputus balok masih memiliki kecepatan ke atas sebesar Tinggi yang masih dapat dicapai balok 1 setelah tali diputus Hanya percepatan gravitasi saja yang mempengaruhi gerak benda sekarang Maka tinggi total balok 1 9. Dua benda masing-masing 2 kg dan 3 kg berada di atas permukaan lantai yang kasar dengan koefisien gesek 0,2 disusun seperti gambar. Jika koefisien statis antara kedua benda 0,3 dan benda kedua diberi gaya sebesar F , maka nilai F maksimum agar kedua benda tetap bergerak bersama-sama adalah…. 10 N 15 N 20 N 25 N 30 N Jawaban D Pembahasan Kita tinjau benda 1 agar benda 1 tetap bergerak bersama benda 2, maka kita terlebih dahulu mencari nilai percepatan maksimumnya Maka besar gaya maksimum agar kedua benda bergerak bersama-sama Gimana menurut kamu pembahasan di atas, Squad? Semoga mudah dipahami ya. Masih banyak pembahasan lainnya yang bisa kamu pelajari, lho. Mau latihan soal SBMPTN lainnya dari tahun 2014 sampai tahun 2018? Yuk, langsung download aplikasi Ruangguru dan berlatih soal-soalnya di ruangbelajar!
\n \n jika gaya gesek diabaikan maka percepatan balok adalah

Padasaat diberi gaya F 2 sebesar 25 N, maka percepatan yang dialami benda menjadi Jika gaya gesek diabaikan, tentukan besar gaya yang menyebabkan benda bergerak ke bawah! berapakah percepatan balok A, apabila besar P adalah 60 N? (g = 10 m/s 2) . Penyelesaian: m A .g = (5 kg)(10 m/s 2) = 50 N m B .g= (3 kg)(10 m/s 2) = 30 N Pada sistem

Gaya gesek fg adalah gaya yang diakibatkan oleh dua benda yang permukaannya saling bersentuhan, dirumuskan fg = μ . N, di mana μ adalah koefisien gesek dan N adalah gaya normal. Apa kabar adik-adik? Semoga kalian selalu dalam keadaan sehat. Materi fisika kita kali ini akan membahas tentang salah satu jenis gaya, yaitu gaya gesek. Di sadari atau tidak, gaya gesek atau gesekan merupakan fenomena sehari-hari, kita semua sangat akrab dengan gaya yang satu ini, bahkan bisa dikatakan bahwa setiap saat kita pasti mengalaminya. Misalnya saja, kita bisa berjalan dan berlari berkat adanya gaya gesek ini. Tanpa gaya gesek, maka aktivitas itu mustahil bisa dilakukan. Lantas, apa sih hakikat dari gaya gesek itu dan apa penyebabnya? Nah, hal inilah yang akan dijelaskan dalam materi ini. Selain itu, akan dibahas pula rumus-rumus yang berlaku dalam gaya gesek lengkap dengan cara penggunaannya untuk menyelesaikan soal. Baiklah, kita mulai saja materinya... Daftar Isi 1Pengertian Gaya Gesek 2Simbol dan Satuan Gaya Gesek 3Rumus Gaya Gesek 4Jenis-Jenis Gaya Gesek Gesek Statis Gesek Kinetis 5Hal-Hal yang Mempengaruhi Gaya Gesek 6Pengaruh Gaya Gesek Terhadap Gerak Benda 7Contoh Gaya Gesek 8Keuntungan dan Kerugian Gaya Gesek Gaya Gesek Gaya Gesek 9Cara Memperkecil dan Memperbesar Gaya Gesek Memperkecil Gaya Gesek Memperbesar Gaya Gesek 10Manfaat Gaya Gesek 11Contoh Soal Gaya Gesek 12Kesimpulan Pengertian Gaya Gesek Apa yang dimaksud dengan gaya gesek? Dalam ilmu fisika, gaya gesek adalah gaya yang diakibatkan oleh dua benda yang permukaannya saling bersentuhan. Jadi, gaya gesek termasuk ke dalam jenis gaya sentuh, yang baru akan bekerja ketika terjadi sentuhan dua permukaan benda, sekaligus merupakan penyebab timbulnya gaya gesek itu sendiri. Gaya gesek akan selalu berlawanan arah terhadap kecenderungan arah gerak benda. Besar kecilnya gaya gesek ditentukan oleh tingkat kekasaran permukaan benda. Semakin kasar permukaan suatu benda, semakin besar nilai gaya geseknya. Sebaliknya, makin halus permukaan benda makin kecil gaya gesek yang terjadi. Penting diketahui bahwa gaya gesek bekerja di semua jenis zat, yaitu zat padat, zat cair, dan gas. Gaya gesek pada zat padat lebih besar dari gaya gesek zat cair dan gas. Gaya gesek pada zat cair disebut juga dengan gaya Stokes. Simbol dan Satuan Gaya Gesek Dalam fisika, gaya selalu disimbolkan dengan F atau f. Begitupun dengan gaya gesek, disimbolkan dengan fg, huruf "g" kecil menjadi tanda bahwa gaya yang dimaksud adalah gaya Sistem Satuan Internasional SI, gaya gesek dinyatakan dalam satuan Newton N.Berdasarkan jenis satuannya, gaya gesek merupakan besaran turunan. Selain itu, gaya gesek juga termasuk ke dalam besaran vektor. Rumus Gaya Gesek Gaya gesek adalah perkalian antara koefisien gesek dan gaya normal. Secara matematis, dirumuskan dengan persamaan fg = μ . N Oleh karena; N = m . g, maka rumus di atas bisa dituliskan lebih lanjut menjadi fg = μ . m . g Keterangan fg = gaya gesek N μ = koefisien gesekan N = gaya normal N m = massa benda kg g = percepatan gravitasi m/s2 Dari persamaan di atas, kita bisa turunkan pula rumus koefisien gesekan, yaitu μ = fg/N Catatan koefisien gesekan adalah besaran yang tidak memiliki satuan. Jenis-Jenis Gaya Gesek Gaya gesek terbagi menjadi dua, yaitu gaya gesek statis dan gaya gesek kinetis. Apa maksud dari kedua jenis gaya gesek tersebut? Yuk, mari kita bahas keduanya. 1. Gaya Gesek Statis Apa yang dimaksud dengan gaya gesek statis? Jadi, gaya gesek statis adalah gaya gesek antara dua benda sebelum keduanya bergerak. Dengan kata lain, gaya gesek statis adalah gaya gesek yang bekerja pada saat benda masih diam atau belum bergerak. Sebagai contoh, pernahkah kalian mendorong sebuah lemari yang berada di lantai datar? Pada saat mulai mendorong, lemari kadang-kadang tidak langsung bergerak. Padahal, gaya telah bekerja padanya. Hal ini disebabkan oleh adanya gaya gesek statis yang bekerja antara kaki-kaki lemari dengan lantai. Di sini, gaya gesek statis mengimbangi dorongan yang kita berikan. Oleh karena itulah, gaya gesek statis sering juga diartikan sebagai gaya yang dibutuhkan untuk mempertahankan benda agar tetap diam. Gaya gesek statis akan berubah menjadi maksimum tepat ketika benda akan bergerak. Berdasarkan uraian di atas, maka ciri-ciri gaya gesek statis adalah bekerja pada benda diam sampai pada saat akan bergerak. Rumus Gaya Gesek Statis Besarnya gaya gesek statis bergantung pada koefisien gesek statis dan gaya normal. Secara matematis, dirumuskan dengan persamaan fs = μs . N, atau fs = μs . m . g Keterangan fs = gaya gesek statis N μs = koefisien gesek statis N = gaya normal N m = massa benda kg g = percepatan gravitasi m/s2 Sementara itu, koefisien gesek statis dirumuskan μs = fs/N Gaya Gesek Statis pada Bidang Miring Sekarang, kita akan gunakan rumus di atas untuk menganalisis gaya gesek statis pada bidang miring. Misalnya, balok di atas ditempatkan pada bidang miring, seperti yang tampak pada gambar di bawah ini Rumus gaya gesek statis pada bidang miring dituliskan dengan persamaan matematis fs = μs . m . g cos α Dari gambar di atas, terlihat bahwa jika sin α ≤ fs, maka benda akan tetap diam atau tidak meluncur ke bawah. Contoh Gaya Gesek Statis Berikut ini adalah beberapa contoh gaya gesek statis Gaya gesek antara lemari yang didorong tetapi belum bergerak dengan lantai. Gaya gesek antara ban mobil yang didorong tetapi belum bergerak dengan aspal. Gaya gesek antara benda dan bidang miring sehingga tidak meluncur ke bawah. 2. Gaya Gesek Kinetis Dinamis Apa yang dimaksud dengan gaya gesek kinetis? Dalam ilmu fisika, gaya gesek kinetis adalah gaya gesek yang bekerja setelah benda bergerak, disebut juga gaya gesek dinamis. Gaya gesek kinetis merupakan peralihan dari gaya gesek statis. Pada saat gaya gesek statis sudah tidak mampu lagi menahan benda untuk tetap diam, maka ia akan berubah menjadi gaya gesek kinetis. Kita pakai kembali ilustrasi lemari di atas. Awalnya, lemari tetap dalam keadaan diam meskipun dorongan telah diberikan karena adanya gaya gesek statis yang mengimbangi dorongan tersebut. Namun, ketika dorongan diperbesar, gaya gesek statis juga akan membesar dan mencapai puncaknya tepat pada saat benda akan bergerak. Setelah lemari mulai bergeser, maka gaya gesek statis langsung menghilang, selanjutnya beralih ke gaya gesek kinetis. Nilai gaya gesek kinetis selalu lebih kecil dari gaya gesek statis. Berdasarkan uraian di atas, maka ciri-ciri gaya gesek kinetis adalah bekerja pada benda tepat setelah bergerak. Rumus Gaya Gesek Kinetis Besarnya gaya gesek kinetis bergantung pada koefisien gesek kinetis dan gaya normal. Secara matematis, dirumuskan dengan persamaan fk = μk . N, atau fk = μk . m . g Keterangan fk = gaya gesek kinetis N μk = koefisien gesek kinetis N = gaya normal N m = massa benda kg g = percepatan gravitasi m/s2 Sementara itu, koefisien gesek kinetis dirumuskan μk = fk/N Gaya Gesek Kinetis pada Bidang Miring Pada kasus benda pada bidang miring, jika sin α > fs atau melampaui gaya gesek statis, maka benda akan bergerak dan meluncur ke bawah. Ketika kondisi itu terjadi, maka gaya gesek yang bekerja adalah gaya gesek kinetis. Perhatikan gambar berikut ini! Rumus gaya gesek kinetis pada bidang miring dituliskan dengan persamaan matematis fk = μk . m . g cos α Sementara itu, percepatan benda pada saat meluncur ke bawah dapat dicari dengan menurunkan persamaan Hukum 2 Newton F = m . a sin α - fk = m . a sin α - μk . m . g cos α = m . a a = sin α - μk cos α g Keterangan a = percepatan benda pada bidang miring m/s2 Contoh Gaya Gesek Kinetis Berikut ini adalah beberapa contoh gaya gesek kinetis Gaya gesek antara telapak kaki dengan lantai pada saat berjalan. Gaya gesek antara ban mobil dan aspal pada saat melaju Gaya gesek antara gear mesin pada saat berputar Jadi, perbedaan antara gaya gesek statis dan gaya gesek kinetis terletak pada keadaan benda, apakah diam atau bergerak. Jika benda diam, maka yang bekerja adalah gaya gesek statis. Namun, jika bergerak artinya yang sedang bekerja adalah gaya gesek kinetis. Hal-Hal yang Mempengaruhi Gaya Gesek Gaya gesek dipengaruhi oleh tingkat kekasaran permukaan bidang sentuh dan berat benda. Berikut ini penjelasannya 1. Kekasaran Permukaan Benda Jika permukaan suatu benda semakin kasar, maka semakin besar gaya geseknya. Begitupun sebaliknya, semakin halus permukaan suatu benda, maka semakin kecil gaya geseknya. Besaran yang menyatakan tingkat kekasaran permukaan benda disebut koefisien gesek. Nilai koefisien gesek menunjukkan tingkat kekasaran permukaan suatu benda. Jadi, salah satu cara memperkecil gaya gesek adalah memperhalus permukaan benda. 2. Berat Benda Gaya gesek bertambah seiring dengan pertambahan berat benda. Artinya, semakin berat suatu benda, maka semakin besar gaya geseknya. Tekanan pada benda karena adanya gaya berat membuat kontak antara permukaan dua benda semakin rapat. Akibatnya, gaya gesek menjadi semakin besar. Jadi, cara kedua memperkecil gaya gesek adalah mengurangi berat benda. Pengaruh Gaya Gesek terhadap Gerak Benda Sifat dari gaya gesek adalah berlawanan arah terhadap kecenderungan arah gerak benda. Akibatnya, gaya gesek menghambat pergerakan benda. Misalnya, gaya gesek antara bola yang menggelinding dengan tanah mengakibatkan bola melambat kemudian berhenti. Hal ini disebabkan oleh gesekan antara bola dengan tanah. Akibat lainnya adalah gaya gesek akan selalu menghasilkan usaha yang negatif karena berlawanan dengan arah gerak atau perpindahan benda. Selain itu, adanya gaya gesek menyebabkan energi yang dibutuhkan untuk menggerakkan sebuah benda semakin Gaya Gesek Berikut ini adalah beberapa contoh gaya gesek pada zat padat, cair, dan gas udara 1. Contoh Gaya Gesek Zat Padat Gaya gesek antara sepatu dan lantai Gaya gesek antara bola dan rumput Gaya gesek antara ban dan aspal Gaya gesek antara gear mesin kendaraan 2. Contoh Gaya Gesek Zat Cair Gaya gesek antara perenang dan air kolam Gaya gesek antara bagian bawah perahu dan air laut Gaya gesek pada kelereng yang dijatuhkan ke dalam air 3. Contoh Gaya Gesek Zat Gas Udara Gaya gesek antara balon dan udara Gaya gesek antara sayap burung dan udara Gaya gesek antara layar perahu dan udara Keuntungan dan Kerugian Gaya Gesek Gaya gesek bisa mendatangkan keuntungan dan kerugian. Berikut ini akan kita bahas keduanya 1. Keuntungan Gaya Gesek Gaya gesek antara kaki dengan lantai menjadikan orang dapat berjalan. Gaya gesek pada rem akan memperlambat laju kendaraan. Gaya gesek antara ban dengan permukaan jalan menjadikan kendaraan dapat melaju dan tidak tergelincir. 2. Kerugian Gaya Gesek Gaya gesek antara ban dengan jalan akan mengakibatkan ban cepat halus. Gaya gesek antara komponen bagian dalam mesin mengakibatkan mesin cepat rusak. Gaya gesek antara roda dan porosnya mengakibatkan putaran roda jadi berat. Cara Memperkecil dan Memperbesar Gaya Gesek Untuk tujuan tertentu, terkadang gaya gesek harus diperkecil atau diperbesar. Berikut ini akan dibahas cara memperkecil dan memperbesar gaya gesek 1. Cara Memperkecil Gaya Gesek Memperhalus permukaan benda. Menggunakan pelumas. Menggunakan bentuk yang ramping dan runcing. 2. Cara Memperbesar Gaya Gesek Memperkasar permukaan benda. Melapisi permukaan benda dengan karet. Mengubah bentuk benda menjadi seperti lembaran Manfaat Gaya Gesek Berikut ini adalah beberapa manfaat gaya gesek dalam kehidupan sehari-hari Gaya gesek dapat menghasilkan panas, misalnya gesekan antara telapak tangan dengan badan bermanfaat untuk menghangatkan badan. Gaya gesek dapat mengikis benda, bermanfaat pada saat mengamplas kayu. Gaya gesek dapat mencegah tubuh tidak tergelincir, misalnya gaya gesek antara alas sepatu dengan lantai pada saat berjalan. Contoh Soal Gaya Gesek Berikut ini adalah beberapa contoh soal tentang gaya gesek Contoh Soal 1 Gaya Gesek Statis Sebuah balok bermassa 2 kg terletak di atas bidang datar kasar. Balok diberi gaya tarik sebesar 4 N mendatar seperti pada gambar. Jika koefisien gesekan statis antara balok dan lantai 0,4, tentukan a. besar gaya gesek statis maksimum. b. besar gaya gesek yang memengaruhi benda. Jawaban Diketahui m = 2 kg F = 4 N μs = 0,4 g = 10 m/s2 Ditanyakan a. fs max......? b. fs......? Penyelesaian a. besar gaya gesek statis maksimum fs max fs max = μs . m . g = 0,4 . 2 . 10 = 8 N b. besar gaya gesek yang memengaruhi benda fs Gaya luar yang memengaruhi benda hanya F = 4 N. Besar gaya tersebut lebih kecil daripada gaya gesek statis sehingga balok masih tetap kasus ini, besarnya gaya gesek sama dengan besarnya gaya luar, fs = F = 4 N. Jadi, gaya gesek statis yang berfungsi pada benda adalah sebesar 4 N. Contoh Soal 2 Gaya Gesek Statis dan Kinetis Sebuah balok kayu diletakkan pada sebuah meja. Massa balok 4 kg, percepatan gravitasi 10 m/s2, koefisien gesekan antara balok dan meja adalah 0,2 dan 0,4. Tentukan gaya gesek benda jika ditarik dengan gaya 20 N. Jawaban Diketahui m = 4 kg g = 10 m/s2 μs = 0,4 μk = 0,2 F = 20 N Ditanyakan Gaya gesek benda...? Penyelesaian Pertama, kita cari tahu dulu apakah benda setelah ditarik tetap diam atau bergerak fs max = μs . m . g = 0,4 . 4 . 10 = 16 N Jadi, besar gaya gesek statis maksimum benda adalah 16 N. Artinya, benda bergerak karena gaya tarik 20 N lebih besar dari gaya gesek statis maksimum yang hanya 16 N. Setelah benda bergerak, maka selanjutnya yang bekerja gaya gesek kinetis fk = μk . m . g = 0,2 . 4 . 10 = 8 N Contoh Soal 3 Koefisien Gesek pada Bidang Miring Sebuah balok kayu bermassa m bergerak mengikut bidang miring kasar dengan kecepatan konstan. Jika diketahui sudut kemiringan bidang terhadap horisontal adalah 300. Hitunglah koefisien gesek kinetis antara bidang dan balok. Jawaban Diketahui Balok bergerak dengan kecepatan konstan, artinya F = 0. α = 300 Ditanyakan μk......? Penyelesaian Gaya yang menyebabkan balok bergerak adalah F = sin α, sehingga F = fk sin α = μk cos α μk = sin α/ cos α μk = tan α = tan 300 = 0,58 Jadi, besar koefisien gesek kinetis antara bidang dan balok adalah 0,58. Contoh Soal Mencari Besar Sudut Seorang menarik koper bermassa 15 kg dengan seutas tali sedemikian rupa sehingga koper bergerak dengan kelajuan konstan. Tali membentuk sudut α terhadap bidang horizontal. Jika gaya yang dikerjakan oleh orang tersebut adalah 30 N dan gaya gesek antara koper dengan bidang horizontal 24 N, berapakah nilai α? Jawaban Diketahui m = 15 kg F = 30 N fk = 24 N g = 10 m/s2 Ditanyakan α.....? Penyelesaian Kelajuan konstan, artinya F = 0 F cos α - fk = 0 F cos α = fk 30 cos α = 24 cos α = 24/30 = 0,8 α = 370 Jadi nilai α adalah 370. Kesimpulan Jadi, gaya gesek fg adalah gaya yang diakibatkan oleh dua benda yang permukaannya saling bersentuhan, dirumuskan fg = μ . N, di mana μ adalah koefisien gesek dan N adalah gaya normal. Gimana adik-adik, udah paham kan materi gaya gesek di atas? Jangan lupa lagi yah. Sekian dulu materi kali ini, bagikan agar teman yang lain bisa membacanya. Terima kasih, semoga bermanfaat.
Jikagesekan antara B dengan lantai dan gesekan katril diabaikan, besar tegangan tali T 2 adalah(g = 10 m/s 2 Tentukan gaya gesekan yang bekerja pada balok dan percepatan balok jika balok didorongdengan gaya horizontal: F = 30N; Jawaban : n = m . g n = 10 . 10 n = 100 N f s = μ s. N f s = 0,3 . 100 f s = 30 N Karena f s > F maka Coba kalian dorong sebuah benda di rumah yang menurut kalian berat, Apa yang kalian rasakan? Jika kalian mendorongnya, mungkin akan terasa berat. Akan tetapi, jika teman-teman kalian membantu untuk mendorong benda tersebut, mungkin akan terasa lebih ringan. Mengapa hal ini bisa terjadi? Semakin besar gaya yang diberikan maka semakin mudah kalian mendorongnya. Semua yang kalian lakukan tersebut terjadi karena terdapat gaya yang bekerja pada benda. Teori mengenai dinamika gerak ini diterangkan oleh seorang ilmuwan Fisika yang bernama Isaac Newton. Dalam artikel kali ini, kalian akan disuguhkan beberapa contoh soal dan pembahasan tentang tiga Hukum Newton secara berurutan. Hukum pertama, memperkenalkan konsep kelembaman yang telah diusulkan sebelumnya oleh Galileo. Hukum kedua, menghubungkan percepatan dengan penyebab percepatan, yakni gaya. Hukum ketiga, merupakan hukum mengenai aksi-reaksi. Newton menuliskan ketiga hukum geraknya dalam sebuah buku yang terpenting sepanjang sejarah, yakni Philosophiae Naturalis Principia Mathematica, yang dikenal sebagai principia. Agar materi ketiga Hukum Newton lebih ringkas, berikut ini ringkasannya dalam bentuk tabel. Perihal Hukum I Newton Hukum II Newton Hukum III Newton Bunyi Jika resultan gaya yang bekerja pada benda sama dengan nol, maka benda yang diam akan tetap diam dan benda yang bergerak akan terus bergerak lurus beraturan GLB. Jika satu gaya atau lebih bekerja pada suatu benda, maka percepatan yang dihasilkan berbanding lurus dan searah dengan resultan gaya dan berbanding terbalik dengan massa benda. Jika suatu gaya aksi diberikan pada suatu benda , maka benda tersebut akan memberikan gaya reaksi yang sama besar dan berlawanan arah dengan gaya yang diberikan. Rumus F = 0 F = ma Faksi = −Freaksi Aplikasi Ketika sedang naik mobil atau kendaraan lainnya. Jika mobil yang semula diam, kemudian secara tiba-tiba mobil bergerak, badan kalian akan terdorong ke belakang. Akan tetapi, jika semula mobil melaju kencang kemudian direm mendadak, maka badan kalian akan terdorong ke depan. Batu yang memiliki massa berbeda jika di tarik tentunya akan terasa ringan menarik batu yang massanya lebih kecil. Sedangkan pada batu yang massa lebih besar, membutuhkan gaya yang lebih besar untuk bisa menggerakkannya. Ketika kita menginjakkan kaki ke tanah, berarti kita memberikan sebuah gaya dorong terhadap tanah tersebut. Gaya yang kaki kita berikan kepada tanah ini merupakan gaya aksi. Kemudian sebagai respon dari gaya aksi yang kita berikan, maka tanah memberikan gaya dorong ke kaki kita yang membuat kaki bisa terangkat. Gaya dorong yang diberikan tanah ini adalah gaya reaksi. Proses ini berlangsung secara terus menerus sehingga membuat kita dapat berjalan di atas tanah. Contoh Soal Hukum 1 Newton dan Pembahasannya 1. Sebuah balok bermassa 5 kg berat w = 50 N digantung dengan tali dan diikatkan pada atap. Jika balok diam maka berapakah tegangan talinya? Penyelesaian Gaya-gaya yang bekerja pada balok seperti gambar di bawah ini, karena balok diam, maka berlaku hukum I Newton yaitu sebagai berikut. F = 0 T – w = 0 T – 50 = 0 T = 50 N Jadi, gaya tegangan tali yang bekerja pada balok tersebut adalah 50 Newton. 2. Sebuah benda bermassa 40 kg ditarik melalui katrol sehingga memiliki posisi seperti yang diperlihatkan pada gambar a di bawah ini. Jika sistem itu diam, maka berapakah gaya F? Penyelesaian Benda yang bermassa akan memiliki berat. w = mg w = 40 kg × 10 m/s2 w = 400 N pada sistem itu bekerja tiga gaya yaitu w, F, dan T yang tidak segaris, sehingga menentukan resultannya dapat digunakan sumbu koordinat XY metode analisis seperti pada gambar b di atas. Sistem diam berarti berlaku Hukum 1 Newton sebagai berikut. Pada sumbu-Y Fy = 0 T sin 53o – w = 0 T0,8 – 400 = 0 0,8T = 400 T = 400/0,8 T = 500 N Pada sumbu-X Fx = 0 F – T cos 53o = 0 F – 5000,6 = 0 F – 300 = 0 F = 300 N Jadi, gaya F yang bekerja pada sistem tersebut adalah 300 Newton. 3. Benda bermassa 10 kg diikat tali dan dibentuk sistem seperti pada gambar a berikut ini. Jika sistem itu diam dan percepatan gravitasi g = 10 m/s2maka tentukan tegangan tali T1 dan T2! Penyelesaian Berat benda adalah sebagai berikut. w = mg w = 10 kg × 10 m/s2 w = 100 N Dengan menggunakan metode analisis sama seperti pada contoh soal sebelumnya di mana diagram gaya ditunjukkan pada gambar b, maka resultan gaya yang bekerja pada sistem ini adalah sebagai berikut. Pada sumbu-Y Fy = 0 T1 sin 60o + T2 sin 30o – w = 0 T1 1/2√3 + T2 sin 1/2 – 100 = 0 1/2√3 T1 + 1/2 T2 = 100 Kedua ruas dikali 2 √3 T1 + T2 = 200 T2 = 200 – √3 T1 ……….. pers. a Pada sumbu-X T2 cos 30o – T1 cos 60o = 0 T2 1/2√3 – T1 1/2 = 0 1/2√3 T2 – 1/2T1 = 0 ……….. pers. b {subtitusikan persamaan a ke persamaan b} 1/2√3200 – √3 T1 – 1/2T1 = 0 100√3 – 3/2T1 – 1/2T1 = 0 3/2T1 + 1/2T1 = 100√3 4/2T1 = 100√3 2T1 = 100√3 T1 = 50√3 N Untuk memperoleh nilai T2, kita subtitusikan nilai T1 = 50√3 ke persamaan a sehingga kita peroleh nilai sebagai berikut. T2 = 200 – √3 T1 T2 = 200 – √350√3 T2 = 200 – 150 T2 = 50 N Dengan demikian, nilai T1 dan T2 berturut-turut adalah 50√3 N dan 50 N. 4. Balok bermassa 20 kg berada di atas bidang miring licin dengan sudut kemiringan 30o. Jika Ucok ingin mendorong ke atas sehingga kecepatannya tetap maka berapakah gaya yang harus diberikan oleh Ucok? Penyelesaian m = 20 kg g = 10 m/s2 w = mg = 20 × 10 = 200 N α = 30o gaya dorong Ucok F harus dapat mengimbangi proyeksi gaya berat. Lihat gambar di bawah ini. Balok bergerak ke atas dengan kecepatan tetap berarti masih berlaku hukum I Newton sehingga memenuhi persamaan berikut. F = 0 F – w sin 30o = 0 F – 2001/2 = 0 F – 100 = 0 F = 100 N Jadi, gaya yang harus diberikan pada balok agar balok bergerak dengan kecepatan tetap adalah sebesar 100 N. 5. Dhania menarik beban dengan bantuan katrol seperti pada gambar a di bawah ini. Pada saat gaya yang diberikan F = 125 N ternyata beban dapat terangkat dengan kecepatan tetap. g = 10 m/s2. Jika gaya gesek katrol dan massa tali dapat diabaikan maka berapakah massa beban tersebut? Penyelesaian Diagram gaya yang bekerja pada sistem ini adalah seperti yang ditunjukkan pada gambar b. Pada beban bekerja dua buah gaya yaitu gaya berat w dan gaya tegangan tali T. Besar gaya tegangan tali ini besarnya sama dengan gaya tarik F. Karena kecepatan beban yang bergerak ke atas adalah tetap, maka berlaku hukum II Newton sebagai berikut. F = 0 T – w = 0 F – mg = 0 125 – m10 = 0 125 – 10m = 0 10m = 125 m = 125/10 m = 12,5 kg Jadi, massa beban tersebut adalah 12,5 kg. Contoh Soal Hukum 2 Newton dan Pembahasannya 1. Sebuah truk dapat menghasilkan gaya sebesar 7000 N. Jika truk tersebut dapat bergerak dengan percepatan 3,5 m/s2, maka tentukan massa truk tersebut! Penyelesaian Diketahui F = 7000 N a = 3,5 m/s2 Ditanyakan m = …? Jawab m = 2000 kg = 2 ton Jadi, massa truk tersebut adalah 2 ton. 2. Balok A bermassa 4 kg diletakkan di atas balok B yang bermassa 6 kg. Kemudian balok B ditarik dengan gaya F di atas lantai mendatar licin sehingga gabungan balok itu mengalami percepatan 1,8 m/s2. Jika tiba-tiba balok A terjatuh maka berapakah percepatan yang dialami oleh balok B saja? Penyelesaian Diketahui mA = 4 kg mB = 6 kg a1 = 1,8 m/s2 Ditanyakan a2 = …? Jawab Keadaan balok pertama tergantung dan kedua A jatuh dapat di gambarkan seperti pada gambar di bawah ini. Pada kedua kejadian berlaku hukum II Newton sebagai berikut. F = ma F = mA + mBa1 F = 4 + 61,8 F = 18 N Gaya F juga bekerja pada keadaan kedua sehingga diperoleh F = mBa2 18 = 6a2 berarti a2 = 3 m/s2 3. Sebuah benda bermassa 2 kg bergerak dengan kecepatan awal 5 m/s di atas bidang datar licin, kemudian benda tersebut diberi gaya tetap searah dengan gerak benda. Setelah menempuh jarak 4 m, kecepatan benda menjadi 7 m/s. Tentukan besar gaya tersebut! Penyelesaian Diketahui v0 = 5 m/s vt = 7 m/s m = 2 kg s = 4 m Ditanyakan F = …? Jawab Persamaan gerak 2as = vt2 – v02 a = 2,4 m/s2 Menurut Hukum II Newton F = ma F = 2 kg3 m/s2 F = 6 kgm/s2 = 6 N Jadi, gaya yang bekerja pada benda adalah 6 N. 4. Jika suatu benda diberi gaya 20 N, benda tersebut memiliki percepatan 4 m/s2. Berapakah percepatan yang dialami benda tersebut jika diberi gaya 25 N? Penyelesaian Pada kasus ini, massa benda m adalah tetap. Ketika diberi gaya F1 = 20 N, benda mengalami percepatan a1 = 4 m/s2, sehingga massa benda m = 5 kg Pada saat diberi gaya F2 sebesar 25 N, maka percepatan yang dialami benda menjadi a2 = 5 m/s2 5. Sebuah gaya F dikerjakan pada sebuah benda bermassa m, menghasilkan percepatan 10 m/s2. Jika gaya tersebut dikerjakan pada benda kedua dengan massa m2, percepatan yang dihasilkan adalah 15 m/s2. Tentukan a. Perbandingan m1 dan m2. b. Percepatan yang dihasilkan gaya F1, apabila m1 dan m2 digabung. Penyelesaian a. Gaya F pada benda 1 dengan massa m1 menghasilkan percepatan a1 = 10 m/s2, maka diperoleh Gaya F pada benda II dengan massa m2, menghasilkan percepatan a2 = 15 m/s2, maka m1 m2 = 1 × 30 1 × 30 10 15 b. Apabila massa digabung, maka m = m1 + m2 Percepatan yang dihasilkan adalah a = 6 m/s2. Contoh Soal Hukum 3 Newton dan Pembahasannya 1. Sebuah buku diletakkan di atas meja. Pada sistem benda tersebut akan bekerja gaya-gaya seperti pada gambar di bawah ini. Ada empat gaya yang bekerja pada sistem tersebut yaitu □ w = berat buku. □ N = gaya tekan normal meja terhadap buku. □ N’= gaya tekan normal buku pada meja. □ Fg = gaya gravitasi bumi pada buku. Tentukan pasangan gaya yang termasuk aksi reaksi! Penyelesaian Pasangan gaya aksi-reaksi memenuhi sifat sama besar, berlawanan arah dan bekerja pada dua benda. Dari sifat di atas dapat ditentukan dua pasangan aksi-reaksi yaitu □ w dengan Fg □ N dengan N’ w dan N bukan aksi-reaksi karena bekerja pada satu benda buku tetapi hubungan N = w merupakan hukum I Newton yaitu F = 0. 2. Seekor ikan yang bergerak dengan siripnya juga terjadi gaya aksi reaksi. Tentukan pasangan aksi-reaksi yang ada. Penyelesaian Gaya aksi gaya dorong yang diberikan sirip ikan kepada air. Gaya reaksi gaya dorong yang diberikan air kepada sirip ikan sehingga ikan dapat bergerak. 3. Dua balok m1 dan m2 yang bersentuhan mula-mula diam di atas lantai licin seperti yang ditunjukkan pada gambar di bawah ini. Jika m1 = 70 kg, m2 = 30 kg dan pada balok pertama dikerjakan gaya sebesar 200 N, maka tentukanlah percepatan masing-masing balok dan gaya kontak antarbalok tersebut. Jawab Diketahui m1 = 70 kg m2 = 30 kg F = 200 N Ditanyakan Percepatan dan gaya kontak. Keadaan benda 1 dan 2 saling bersentuhan sehingga akan timbul gaya kontak atau gaya aksi reaksi berdasarkan Hukum III Newton. Supaya lebih jelas, perhatikan gambar berikut ini. F12 adalah gaya aksi yang diberikan balok 1 kepada balok 2 bekerja pada balok 2. Sedangkan F21 adalah gaya reaksi yang diberikan balok 2 kepada balok 1 bekerja pada balok 1. Kedua gaya ini memiliki besar yang sama. Untuk menentukan besar percepatan kedua balok dan juga gaya kontak kita tinjau persamaan gerak masing-masing balok menggunakan Hukum II Newton sebagai berikut. ∎ Tinjau Balok 1 Karena lantai licin maka tidak ada gaya gesek yang bekerja, sehingga resultan gaya pada sumbu-Y tidak perlu diuraikan. FX = ma F – F21 = m1a ............... Pers. 1 ∎ Tinjau Balok 2 FX = ma F12 = m2a ............... Pers. 2 Karena F12 = F21, maka kita dapat mensubtitusikan persamaan 2 ke dalam persamaan 1 sebagai berikut. F – m2a = m1a F = m1a + m2a F = m1 + m2a a = F/m1 + m2 ............... Pers. 3 Dengan memasukkan nilai yang diketahui dalam soal ke dalam persamaan 3, maka kita peroleh besar percepatan kedua balok sebagai berikut. a = 200/70 + 30 a = 200/100 a = 2 m/s2 Jadi, besar percepatan kedua balok adalah 2 m/s2. Untuk menentukan gaya kontak antara balok 1 dan 2, kita subtitusikan nilai percepatan yang kita peroleh ke dalam persamaan 2 sebagai berikut. F12 = m2a F12 = 302 F12 = 60 N Dengan demikian, besar gaya kontak antarbalok adalah 60 N. 4. Balok A dan balok B terletak di atas permukaan bidang miring licin dengan sudut kemiringan 37°. Massa balok A 40 kg dan massa balok B 20 kg. Kemudian balok A didorong dengan gaya F sebesar 480 N seperti yang diperlihatkan pada gambar di bawah ini. Tentukan besar percepatan gerak kedua balok dan juga gaya kontak antara balok A dan balok B. Jawab Diketahui mA = 40 kg mB = 20 kg F = 480 N θ = 37° g = 10 m/s2 Ditanyakan Percepatan dan gaya kontak. Perhatikan gambar di bawah ini. FAB adalah gaya aksi yang diberikan balok A kepada balok B, sedangkan FBA adalah gaya reaksi yang diberikan balok B kepada balok A. Kedua gaya tersebut merupakan gaya kontak yang besarnya sama. Lalu untuk menentukan besar percepatan kedua balok dan juga gaya kontak, kita tinjau persamaan gerak masing-masing balok menggunakan Hukum II Newton sebagai berikut. ∎ Tinjau Balok A Karena bidang miring licin maka tidak ada gaya gesek yang bekerja, sehingga resultan gaya pada sumbu-Y tidak perlu diuraikan. FX = ma F – wA sin θ – FBA = mAa F – mAg sin θ – FBA = mAa ............... Pers. 1 ∎ Tinjau Balok B FX = ma FAB – wA sin θ = mBa FAB – mBg sin θ = mBa FAB = mBa + mBg sin θ ............... Pers. 2 Karena FAB = FBA, maka kita dapat mensubtitusikan persamaan 2 ke dalam persamaan 1 sebagai berikut. F – mAg sin θ – mBa + mBg sin θ = mAa F – mAg sin θ – mBa – mBg sin θ = mAa F – mAg sin θ – mBg sin θ = mAa + mBa F – g sin θmA + mB = mA + mBa a = [F – g sin θmA + mB]/mA + mB a = [F/mA + mB] – g sin θ ............... Pers. 3 Dengan mensubtitusikan nilai-nilai yang diketahui dalam soal ke dalam persamaan 3, maka kita peroleh besar percepatan kedua balok sebagai berikut. a = [480/40 + 20] – 10 sin 37° a = 480/60 – 100,6 a = 8 – 6 a = 2 m/s2 Jadi, besar percepatan kedua balok adalah 2 m/s2. Untuk menentukan gaya kontak antara balok A dan B, kita subtitusikan nilai percepatan yang kita peroleh ke dalam persamaan 2 sebagai berikut. FAB = mBa + mBg sin θ FAB = 202 + 2010sin sin 37° FAB = 40 + 2000,6 FAB = 40 + 120 FAB = 160 N Dengan demikian, besar gaya kontak antara balok A dan balok B adalah 160 N.
\n jika gaya gesek diabaikan maka percepatan balok adalah
Dalamilmu fisika, gaya gesek adalah gaya yang diakibatkan oleh dua benda yang permukaannya saling bersentuhan. Jadi, gaya gesek termasuk ke dalam jenis gaya sentuh, yang baru akan bekerja ketika terjadi sentuhan dua permukaan benda, sekaligus merupakan penyebab timbulnya gaya gesek itu sendiri. - Jika Anda menemui soal cerita terkait sebuah benda yang ditarik dan didorong oleh beberapa gaya, maka itu termasuk dalam Hukum Newton Hukum Newton II, yakni "Percepatan yang dialami sebuah benda, sebanding dengan resultan gaya yang bekerja pada benda tersebut, dan berbanding terbalik dengan massa bendanya." Berikut contoh soal dan pembahasan terkait soal cerita gaya newton berarah. Contoh soal 1 tangkapan layar contoh soal fisika balok diberi gaya yang arah dan besarnya seperti pada gambar di atas. Jika massa balok adalah 25 kg. Maka berapakah percepatan balok? Baca juga Hukum Newton dan Contoh Penerapannya Jawab Diketahui F ke arah kiri 8N + 8N = 16N F ke arah kanan 4N + 4N = 8N Resultan gaya F kiri - F kanan = 8N ke kiri Massa 25 kg Ditanyakan Percepatan a ...? Pembahasan Jadi percepatan benda tersebut adalah 5 m/s 2. Jawaban: B. Contoh 2 - Soal Gaya yang Dibutuhkan Untuk Menarik Benda pada Bidang Miring. Perhatikan gambar di bawah! Jika gaya gesek diabaikan maka besarnya gaya tarikan (minimum) yang diperlukan agar roda bergerak ke atas adalah . A. 600 N B. 750 N C. 200 N D. 1.000 N E. 1.200 N. Pembahasan:

Rumus gaya gesek di dalam ilmu fisika biasanya digunakan untuk menghitung koefisien gesekan statis atau kinetis. Materi ini dibahas berbarengan dengan cabang materi lainnya seperti Hukum Newton dan sebagainya. Gaya bisa berarti suatu dorongan atau tarikan yang akan menggerakkan benda bebas. Gaya erat kaitannya dengan Hukum Newton. Sebab, pada rumus gaya yang berbunyi “massa dikali percepatan” sama dengan Newton. Newton sendiri adalah satuan SI turunan dengan lambang N. Singkatnya, Newton merupakan satuan dari gaya. Konsep gaya dapat berupa interaksi apapun yang dapat menyebabkan sebuah benda bermassa mengalami perubahan gerak. Gaya bisa dibedakan berdasarkan jenisnya. Salah satu jenis gaya yang sering diterapkan pada aktivitas sehari-hari adalah gaya gesek. Definisi Gaya Gesek Secara sederhana konsep gaya gesek adalah dipengaruhi oleh dua permukaan benda yang saling bertemu. Gaya gesek merupakan bentuk gaya yang saling berlawanan dengan suatu gerak benda. Menurut penjelasan yang ada di buku Dunia IPA, disebutkan kalau gaya gesek bisa terjadi karena adanya benda-benda yang saling bersentuhan. Gaya gesek termasuk ke dalam gaya kontak sentuh karena melibatkan pertemuan antara satu objek dengan objek lainnya. Baca Juga Timbulnya gaya gesek pada benda-benda yang bersentuhan tidak sama besar nilainya. Gaya gesek bisa semakin besar kalau permukaan suatu objek sangat kasar. Hal ini pun berlaku sebaliknya apabila permukaan benda tersebut sangat halus. Artinya, besar kecilnya gaya gesek pada sebuah benda sangat dipengaruhi oleh kasar-licinnya permukaan benda yang bergesekan. Advertising Advertising Mengutip dari buku berjudul IPA Terpadu Biologi, Kimia, Fisika, definisi lain dari gaya gesek adalah gaya yang melawan gerak benda pada suatu permukaan. Berdasarkan penjelasan ini, setidaknya ada beberapa sifat-sifat gaya gesek yang antara lain meliputi Rumus gaya gesek tidak bisa menggerakan benda. Besarnya gaya gesek sangat bergantung pada kekasaran dua benda yang bergesekan. Arah gaya gesek selalu berlawanan. Sehingga gaya gesek akan menghambat pergerakan benda. Rumus gaya gesek selalu dipengaruhi arah kecenderungan benda bergerak. Ini mengingat gaya gesek merupakan gaya yang berarah melawan gerak benda. Contoh gaya gesek yang bisa ditemui di kehidupan sehari-hari contohnya seperti ketika seseorang mendorong sebuah meja. Jika meja tersebut didorong pada permukaan yang begitu kasar, maka gaya geseknya akan semakin besar. Sedangkan, kalau permukaannya halus atau meja itu memiliki roda di bawahnya maka gaya geseknya menjadi lebih kecil. Jenis-jenis Gaya Gesek Gaya gesek dan rumus gaya gesek umumnya melibatkan dua permukaan benda yang bersentuhan. Gaya gesek yang melawan atau juga menahan gaya tarik/dorong ini besarannya berbeda-beda. Di dalam ilmu fisika, yang disebut gaya gesek adalah ketika dua buah benda bersentuhan. Benda atau objek tersebut bisa berbentuk padat, gas, dan cair. Bentuk gaya ini juga merupakan kumpulan akumulasi interaksi mikro antara kedua permukaan yang bersentuhan itu. Baca Juga Hingga saat ini ada dua jenis gaya gesek yang diketahui. Pertama adalah gaya gesek kinetis dan kedua yaitu gaya gesek statis. Untuk lebih jelasnya simak penjelasan lengkapnya berikut ini Gaya Gesek Kinetis Secara harfiah yang dimaksud dengan gesekan yang terjadi saat suatu benda bergerak. Contohnya bisa dilihat saat sebuah roda mobil dan motor sedang melaju di jalan raya. Sejumlah pendapat menyatakan kalau gaya gesek kinetis akan selalu lebih kecil daripada gaya gesek statis. Sebagaimana dijelaskan dalam salah satu artikel di gaya gesek kinetis bekerja pada benda yang sedang bergerak. Gaya gesek yang bekerja ketika permukaan kontak saling bergeser tentunya sangat berlawanan dengan gaya gesek statis. Rumus gaya gesek kinetis dapat dinyatakan seperti ini Keterangan fk besar gaya gesek kinetis N μk koefisien gesek kinetis N N gaya normal N Jika melihat dari rumus gaya gesek kinetis di atas, nilai gaya gesek jenis ini merupakan hasil perkalian koefisien geseknya dengan gaya normal suatu objek. Seperti dijelaskan sebelumnya, koefisien gesek selalu lebih kecil dari koefisien gesek statis untuk material yang sama. Gaya Gesek Statis Gaya gesek statis bekerja pada benda-benda yang diam. Karena bekerja pada benda dalam kondisi diam, besar gaya gesek statis merupakan hasil antara koefisien gesek statis dengan gaya normal benda. Koefisien gesek merupakan besaran yang bergantung pada kekasaran kedua permukaan bidang yang bersentuhan Pada umumnya, koefisien gaya gesek statis akan lebih besar ketimbang gaya gesek kinetis. Untuk rumus gaya gesek ini bisa dinyatakan sebagai berikut Keterangan fs merupakan besar gaya gesek statis N μs koefisien gesek statis N N gaya normal N Rumus Gaya Gesek Dalam buku Gerak dan Gaya 2022 yang ditulis oleh Bayu Sapta Hari, gaya gesek dibedakan menjadi gaya gesek statis dan kinetis. Besarnya dapat dinyatakan oleh rumus gaya gesek sebagai berikut Selain uraian di atas berikut rincian tentang rumus gaya gesek statis dan dinamis Gaya gesek statis fs = μs x N Gaya gesek kinetis fk = μk x N Contoh Soal dan Cara Menghitung Rumus Gaya Gesek Setelah memahami rumus gaya gesek, biasanya pembahasan selanjutnya adalah berlatih untuk mengerjakan soal yang berkaitan dengan rumus gaya gesek. Baca Juga Mengutip situs dan sumber lainnya, di bawah ini ada beberapa contoh soal rumus gaya gesek Contoh soal 1 Terdapat sebuah balok bermassa 20 kg terletak di atas lantai kasar. Diketahui bahwa μs = 0,6 dan μk = 0,3. Kemudian balok ditarik dengan gaya sebesar 160 N secara mendatar. Tentukan gaya gesek yang dialami balok! Cara mengerjakannya Diketahui m = 20 kg μs = 0,6 μk = 0,3 F = 160 N Ditanya f? Jawab Besar gaya normal N FY = 0 N – w = 0 N = w N = mg N = 2010 N = 200 N Mencari gaya gesek statis fs = μs x N fs = 0,6 x 200 fs = 120 N Karena F > fs maka balok tersebut bergerak. Maka gaya gesek kinetis nya fk = μk x N fk = 0,3200 fk = 60 N Gaya gesek yang bekerja pada balok tersebut adalah 60 N. Contoh soal 2 Suatu benda bermassa 50 kg berada pada bidang datar. Pada benda, gaya yang bekerja 200 N mendatar. Berapa percepatan pada benda itu kalau bidang itu licin dan bidang kasar dengan koefisien gesek = 0,3 g = 10 m/s2? Cara mengerjakannya Diketahui m = 50 kg μ = 0,3 F = 200 N g = 10 m/s2 Ditanya percepatan benda jika bidang licin dan percepatan benda jika bidang kasar μ = 0,3. Jawab Bidang licin F = maka a = F/m = 200/50 = 4 m/s Jadi, percepatan jika bidang licin = 4 m/s2. Bidang kasar μ = 0,3 N = w = mg = 50 x 10 = 500 N Fgesek = μ N = 0,3 x 500 = 150 N Ftotal = F – Fgesek = 200 – 150 = 50 N a = Ttotal/m = 50/50 = 1 m/s Jadi, percepatan jika bidang kasar = 1 m/s2. Itulah beberapa contoh soal yang bisa dijadikan sebagai referensi. Namun, karena materi rumus gaya gesek berkaitan dengan Hukum Newton dan materi lainnya. Maka ada baiknya secara keseluruhan materi tersebut dipahami serta dipelajari terlebih dahulu. Manfaat Penerapan Rumus Gaya Gesek di Kehidupan Sehari-hari Mengutip dari buku Dunia IPA, gaya gesek dapat memberikan manfaat dan kerugian dalam kehidupan sehari-hari. Manfaat penerapan rumus gaya gesek yang kita peroleh misalnya menghasilkan panas, daya kikis, dan daya hambat. Sementara kerugiannya dapat menimbulkan kerusakan pada bagian-bagian mesin dan pemborosan energi. Lebih lanjut berikut manfaat penerapan rumus gaya gesek di kehidupan sehari-hari Gaya gesek dapat mengikis benda, contohnya gaya gesek yang ditimbulkan ampelas terhadap kayu membuat kayu menjadi halus. Gaya gesek mencegah benda tergelincir, misalnya gaya gesek antara alas sepatu dengan lantai membuat seseorang tidak tergelincir. Tanpa ada gaya gesek, dia tidak dapat berjalan karena lantai licin. Gaya gesek menghasilkan panas, misalnya gaya gesek dapat menghangatkan badan ketika seseorang menggosokkan kedua belah tangannya. Pengertian Gaya. Gaya merupakan suatu besaran yang menyebabkan suatu benda menjadi dapat bergerak. Gaya merupakan dorongan atau tarikan yang akan mempercepat atau memperlambat gerak suatu benda. Gaya memiliki nilai dan arah, oleh karenanya gaya adalah besaran yang mengikuti aturan- aturan penjumlahan vector. Dalam satuan Sistem Internasional SI, percepatan gravitasi dinyatakan dalam m/s2. Percepatan gravitasi di suatu tempat pada permukaan bumi sebesar g = 9,80 m/s2. Satuan Percepatan Gravitasi dapat dinyatakan dalam N/kg, di mana g = 9,80 m/s2, atau g = 9,80 N/kg. Hal ini berarti, sebuah benda yang massanya 1 kg di permukaan bumi memiliki berat sebesar w = 1 kg × 9,80 m/s2 = 9,80 N Gaya Berat Gaya berat adalah gaya gravitasi yang bekerja pada suatu benda yang memiliki massa m. Arah gaya berat selalu mengarah ke pusat bumi. Contoh Gambar Persamaan Rumus Gaya Berat Pada Benda Gaya berat yang bekerja pada suatu benda dapat dinyatakan dengan menggunakan persamaan rumus berikut w = dengan kerterangan w = gaya berat, N m = massa benda, kg g =percepatan gravitasi, m/s2 Jadi, gaya berat w yang dialami suatu benda nilainya sama dengan perkalian antara massa m benda tersebut dengan percepatan gravitasi g di tempat itu. Contoh Soal Ujian Perhitungan Rumus Gaya Berat Jika percapatan gravitasi di kota Bandung adalah 10 m/s2, maka berapakah berat benda yang bermassa 10 kg di Bandung… Penyelesaian Diketahui m = 10 kg g = 10 m/s2 Jawab w = w = 10 x 10 w = 100 N jadi berat benda tersebut di kota Bandung adalah 100 Newton. Gaya Normal. resultan gaya pada sebuah benda yang tetap diam adalah nol. Sehingga pasti ada gaya lain pada benda tersebut untuk mengimbangi gaya gravitasi. Gambar Contoh Peramaan Rumus Gaya Normal Benda Untuk sebuah benda yang diam di atas sebuah bidang datar, maka bidang tersebut akan memberikan gaya yang arahnya ke atas. Gaya yang diberikan oleh bidang ini sering disebut dengan gaya sentuh, karena terjadi jika dua benda bersentuhan. Ketika gaya sentuh tegak lurus terhadap permukaan bidang sentuh, gaya itu biasa disebut dengan gaya normal N “normal” berarti tegak lurus. Gaya normal N adalah gaya yang bekerja pada bidang yang bersentuhan antara dua permukaan benda, yang arahnya selalu tegak lurus dengan bidang sentuh. Kedua gaya yang ditunjukkan pada Gambar, bekerja pada benda yang tetap dalam keadaan diam, sehingga jumlah vektor kedua gaya ini pastilah nol. Dengan demikian, w dan N harus memiliki besar yang sama dan berlawanan arah. Untuk permukaan bidang yang datar, besarnya gaya normal sama dengan gaya berat, hal ini dikarenakan gaya normal dan gaya berat merupakan pasangan aksi reaksi. Besarnya gaya normal yang bekerja pada suatu benda pada permukaan bidang datar dapat dinyatakan dengan menggunakan persamaan berikut N – w =0 N = w N = m. g Sedangkan, untuk permukaan bidang miring, besarnya gaya normal dapat dinyatakan dengan menggunakan persamaan rumus berikut N – w cos α =0 N = w cos α N = m. g cos α Dengan keterangan N = gaya normal, N m = massa benda, kg g = percepatan gravitasi, m/s2 α= kemiringan bidang permukaan Contoh Soal Perhitungan Rumus Gaya Normal Benda bermassa 5 kg terletak diam di atas sebuah bidang. Tentukanlah gaya normal yang bekerja pada benda jika bidang tersebut datar, dan membentuk sudut 30° terhadap bidang datar. Penyelesaian m = 10kg g = 10m/s2 Jawab Pada benda bekerja gaya berat w = mg = 5 kg10 m/s2 w = 50 N dan Besar gaya normal, N. Karena benda diam, sesuai dengan Hukum Pertama Newton, maka resultan gayanya harus sama dengan nol maka F = 0 N – w = 0 N = w = 50 N. Untuk mendapatkan besar gaya normal, maka uraikan berat w ke sumbu-y sumbu-y berimpit dengan N. Contoh Soal Perhitungan Rumus Gaya Normal Pada sumbu-y benda diam maka wy = w cos 30° wy= 501/2Ö 3 wy = 25 √3 N. atau wy= 43,3 N Pada sumbu-y benda posisi diam, maka Fy=0 N – wy = 0 Sehingga diperoleh N – wy = 43,3 N Gaya Gesekan Gaya gesek adalah gaya yang bekerja antara dua permukaan benda yang saling bersentuhan. Arah gaya gesek berlawanan arah dengan kecenderungan arah gerak benda. Gaya gesekan dapat dibedakan menjadi dua, yaitu gaya gesekan statis dan gaya gesekan kinetis. Persamaan Rumus Gaya Gesekan Statis Kinetik Gaya Gesek Statis Gaya gesek statis fs adalah gaya gesek yang bekerja pada benda selama benda tersebut masih diam. Dan Selama benda masih diam berarti resultan gaya yang bekerja pada benda tersebut adalah nol hukum I Newton. Jadi, selama benda masih diam gaya gesek statis selalu sama dengan yang bekerja pada benda tersebut. Besar gaya gesek statis mencapai nilai maksimum ketika benda tepat akan bergerak. Secara matematis gaya gesekan dapat dinyatakan dengan menggunakan persamaan sebagai berikut. fs,maks = ms .N Keterangan N = Gaya normal, N fs =gaya gesekan statis maksimum N ms = koefisien gesekan statis Gaya Gesek Kinetik Gaya gesek kinetis fk adalah gaya gesek yang bekerja pada saat benda dalam keadaan bergerak. Gaya ini termasuk gaya dissipatif, yaitu gaya dengan usaha yang dilakukan akan berubah menjadi kalor. Perbandingan antara gaya gesekan kinetis dengan gaya normal disebut koefisien gaya gesekan kinetis mk. Secara matematis dapat di tulis sebagai berikut. fk = mk .N Dengan Keterangan N = gaya normal, N fk = gaya gesekan kinetis N mk = koefisien gesekan kinetis Contoh Soal Rumus Perhitungan Gaya Gesekan Sebuah balok bermassa 20 kg berada di atas lantai mendatar kasar. μs = 0,6 dan μk = 0,3. Kemudian balok ditarik gaya sebesar F mendatar. g = 10 m/s2. Tentukan gaya gesek yang dirasakan balok dan percepatan balok jika a. gaya tarik F = 100 N dan b. gaya tarik F = 140 N Penyelesaian m = 20 kg μs = 0,6 μk = 0,3 g = 10 m/s2 Gaya normal N memenuhi N = w = = 200 N Pengaruh gaya F dapat diketahui dengan menghitung dahulu gaya gesek pada balok fs max.= μs . N fs max. = 0,6 . 200 = 120 N Jika balok ditarik degan gaya F = 100 N, maka F fs max berarti balok bergerak. Gaya geseknya adalah gaya gesek kinetik, yaitu sebesar fk = μk N fk = 0,3 . 200 = 60 N Percepatan balok dapat ditentukan dengan menggunakan hukum II Newton yaitu sebagai berikut. F = m a F − fk = m . a 140 − 60 = 20 a a = 4 m/s2 Gerak Benda pada Bidang Datar Pada gambar terlihat bahwa Sebuah benda berbentuk balok diletakan di atas bidang datar dengan permukaan yang licin. Balok kemudin diberi gaya sebesar F arah mendatar. Gaya ini menyebabkan balok bergerak lurus dengan percepatan a. Persamaan Gaya Gerak Benda Pada Bidang Datar Gaya gaya yang bekerja pada sumbu-y adalah ∑Fy=N – w Benda tidak bergerak pada sumbu-y, maka ∑Fy=0 atau ∑Fy=N – w = 0 atau N = w = Sedangkan gaya yang bekerja pada sumbu-x adalah ∑Fx= atau F = atau a=/F/m Dengan keterangan a = percepatan m/s2 F = gaya, N m = massa, kg Contoh Soal Perhitungan Rumus Gerak Benda pada Bidang Datar Pada permukaan bidang datar yang licin, artinya tidak ada gaya gesekan yang bekerja anatara benda dengan bidang. Sebuah benda bermassa 4 kg terletak di atas bidang tersebut. Benda diberi gaya mendatar sebesar 10 N. Hitunglah percepatan benda tersebut Diketahui m = 4 kg F = 10 N a=F/m = 10/4 a = 2,5 m/s2 Gerak Benda Pada Bidang Miring Sebuah benda memiliki gaya beart w = diletakan di atas permukaan licin bidang miring yang membentuk sudut kemiringan a terhadap garis horizontal. Rumus Gaya Gerak Benda Pada Bidang Miring Gaya yang bekerja pada benda adalah gaya normal N yang memiliki arah tegak lurus terhadap bidang sentuh bidang miring Sumbu-x sejajar dengan bidang miring dan sumbu-y tegak lurus pada bidang miring. Komponen gaya berat pada sumbu-x wx = sin α Karena benda bergerak pada sumbu X gaya yang menyebabkan benda bergerak adalah gaya yang sejajar dengan bidang miring, maka percepatan yang dialami oleh benda adalah sebagai berikut. ∑Fx = m. a sin α = m. a atau a =g sin α komponen gaya berat pada sumbu-y wy= cos α Gaya yang bekerja pada sumbu-y adalah ∑Fy= N – wy ∑Fy= N – cos α Benda tidak bergerak pada sumbu-y, sehingga ∑Fy= 0 ∑Fy= N – cos α =0 N = cos α Dengan Keterangan N = gaya Normal N m = massa benda, kg α= sudut kemiringan g = percepatan graitasi m/s2 Contoh Soal Ujian Rumus Perhitungan Gerak Benda Pada Bidang Miring Sebuah balok yang massanya 6 kg meluncur ke bawah pada sebuah papan licin yang dimiringkan 30° dari lantai. Jika jarak lantai dengan balok 10 m dan besarnya gaya gravitasi ditempat itu 10 ms-2, maka tentukan percepatan dan waktu yang diperlukan balok untuk sampai di lantai! Diketahui m = 6 kg s = 10 m α= 30° g = 10 ms-2 Ditanyakan a = …? t = …? Jawab Gaya berat balok diuraikan pada sumbu-x bidang miring dan Sumbu-y garis tegak lurus bidang miring. Benda meluncur dengan gaya F = w sin 30°. Percepatan ditentukan dengan menggunakan hukum II Newton F = m × a w sin 30° = m × a m × g sin 30° = m × a 6 × 10 × 0,5 = 6 a a = 30/6 a= 5 ms-2 Jadi, balok tersebut meluncur ke bawah dengan percepatan 5 ms-2. Waktu t yang dibutuhkan sampai ke lantai menggunakan persamaan pada GLBB St= + ½ Karena v0 = 0, maka St= ½ t2 = 2x St/a t2 = 2 x10/5 t = 2 detik Jadi, waktu yang diperlukan balok untuk sampai ke lantai adalah 2 detik. Gerak Benda Orang Pada Tali Katrol dan Lift Dua buah benda balok A dan B dihubungkan dengan seutas tali melalui sebuah katrol yang licin dan massa katrol diabaikan. Apabila massa benda A lebih besar dari massa benda B mA > mB, maka benda A akan bergerak turun dan B akan bergerak naik. Karena massa katrol dan gesekan pada katrol diabaikan, maka selama sistem bergerak, besarnya tegangan pada kedua ujung tali adalah sama yaitu T. Selain itu, percepatan yang dialami oleh masing- masing benda adalah sama yaitu sebesar a. Gaya Gerak Benda Orang Pada Tali Katrol dan Lift Gaya -gaya yang searah dengan gerak benda diberi tanda positif +, sedangkan Gaya -gaya yang berlawanan arah dengan gerak benda diberi tanda negatif -. Resultan gaya yang bekerja pada benda balok A adalah FA = mA .a wA – T = Resultan gaya yang bekerja pada benda balok B adalah FB = T – wB = Berdasarkan persamaan Hukum II Newton dapat dinyatakan sebagai berikut F = wA – wB = + mA – mBg =mA + mBa a = g mA – mB/mA + mB dengan keterangan a = percepatan sistem m/s2 mA = massa benda A kg mB = massa benda B kg g = percepatan gravitasi setempat m/s2 Menentukan Tegangan Tali Katrol Besarnya tegangan tali katrol T dapat ditentukan dengan menggunakan persamaan rumus berikut T = mA g – a atau T = mB a + g Contoh Soal Perhitungan Gaya Berat Benda Gerak Pada Lift Berat seseorang ketika diukur di atas lantai adalah 700N. kemudian orang tersebut turun menggunakan lift yang bergerak ke bawah dengan perepatan 4 m/s2. Jika percepatan gravitasi 10m/s2, berapakah berat orang di dalam lift tersebut. Contoh Soal Perhitungan Gaya Berat Benda Gerak Pada Lift Penyelesaian Diketahui w = 700N a = 4m/s2 g = 10 m/s2 Jawab. w = w = 700 N maka m = 70 kg Berat orang yang berada dalam lift bergerak sama dengan gaya normal yang diterimannya. Lift dipercepat ke bawah sehingga berlaku F = m a w − N = m a 700 − N = 70 x 4 N = 420 N jadi berat orang dalam lift yang begerak kebawah adalah 420 N Gerak Benda Kendaraan Mobil Pada Belokan Tikungan Contoh Soal Rumus Gerak Benda pada Belokan Tikungan Sebuah mobil bermassa 400 kg sedang melintasi belokan jalan yang melingkar dengan jari- jari 30 m. Jalan tersebut dirancang dengan kemiringan 370. Berapakah kecepatan maksimum yang diperbolehkan pada mobil itu? Contoh Soal Rumus Gerak Benda pada Belokan Tikungan Penyelesaian Diketahui m = 400 kg w = = 4000 N R = 30 m α = 37O Pada mobil yang bergerak melingkar harus memiliki gaya sentripetal sehingga dapat melintas dengan aman. Gaya gaya pada mobil itu dapat dilihat pada Gambar Mobil tidak bergerak vertikal berarti berlaku hukum I Newton pada arah vertikal sehingga diperoleh nilai N F = 0 N cos 37O − w = 0 N x 0,8 − 4000 = 0 N = 4000/0,8= 5000 N Sedangkan pada arah horisontal terdapat proyeksi N sin 370. Gaya inilah yang bertindak sebagai gaya sentripetal Fs sehingga berlaku Fs= N sin 370 = N sin 370 400 x v2/R = 5000x 0,6 v2=225 v =15m/s Daftar Pustaka Sears, – Zemarnsky, MW , 1963, “Fisika untuk Universitas”, Penerbit Bina Cipta, Bandung, Giancoli, Douglas C. 2000. Physics for Scientists & Engineers with Modern Physics, Third Edition. New Jersey, Prentice Hall. Halliday, David, Robert Resnick, Jearl Walker. 2001. Fundamentals of Physics, Sixth Edition. New York, John Wiley & Sons. Tipler, Paul, 1998, “Fisika untuk Sains dan Teknik”, Jilid 1,Pernerbit Erlangga, alih bahasa Prasetyo dan Rahmad W. Adi, Jakarta. Tipler, Paul, 2001, “Fisika untuk Sains dan Teknik”, Jilid 2, Penerbit Erlangga, alih bahasa Bambang Soegijono, Jakarta. Ganijanti Aby Sarojo, 2002, “Seri Fisika Dasar Mekanika”, Salemba Teknika, Jakarta. Giancoli, Douglas, 2001, “Fisika Jilid 1, Penerbit Erlangga, Jakarta. Gaya Benda Pengertian Gerak Bidang Datar Miring Tali Katrol Rumus Gaya Berat Normal Gesek Kinetik Contoh Soal Perhitungan

Jikakoefisien gesekan statis antara benda dan lantai 0,5 dan percepatan gravitasi bumi 10 m/s2 maka besar gaya gesek statis maksimum antara benda dan lantai adalah a. 15,2 N F = 12 N b. 16,4 N c. 24,8 N 4 KG 530 d. 30,4 N e. 32,8 N 9.

Gaya Gesek adalah gaya yang berlawanan arah dengan arah gerak benda. Gaya ini terjadi karena sentuhan benda dengan bidang lintasan akan membuat gesekan antara keduanya saat benda akan mulai bergerak hingga benda bergerak. Besarnya gaya ini ditentukan berdasarkan kekasaran permukaan kedua bidang yang bersentuhan, jadi semakin kasar permukaan suatu bidang maka nilai gaya geseknya akan semakin besar. Agar kamu mampu memahami materi ini dengan baik, sebaiknya kamu harus memahami terlebih dahulu materi Hukum Newton I Hukum Newton II Terdapat dua jenis gaya gesek yaitu Gaya Gesek Statis dan Kinetis. Berikut dijelaskan lebih lanjut. Gaya Gesek Statis GGS Gaya Gesek Statis adalah gaya yang bekerja saat benda diam hingga tepat saat benda akan bergerak. Sebagai contoh, GGS dapat mencegah kamu untuk tergelincir dari tempat kamu berpijak. GGS juga dapat mencegah benda meluncur ke bawah pada bidang miring. Besar GGS merupakan hasil perkalian antara koefisien gesek statis dengan gaya normal benda. Koefisien gesek merupakan besaran yang bergantung pada kekasaran kedua permukaan bidang yang bersentuhan. Koefisien gesek statis dinotasikan dengan . Persamaan GGS . [Sumber Douglas C. Giancoli, 2005] Perhatikan gambar diatas untuk melihat arah-arah gaya. Karena setiap benda yang diam hingga tepat akan bergerak memiliki nilai GGS, maka benda tidak akan bergerak jika gaya yang diberikan lebih kecil dari nilai GGS karena arah gaya yang diberikan dengan arah gaya gesek selalu berlawanan. Jadi, benda akan dapat bergerak jika gaya yang diberikan lebih besar dari nilai GGS. benda tetap diam. benda mulai bergerak Gaya Gesek Kinetis GGK Gaya gesek kinetis adalah gaya yang bekerja saat benda bergerak. Saat benda diam hingga tepat akan bergerak, gaya yang berkerja adalah GGS. Lalu, saat benda mulai bergerak maka gaya yang bekerja adalah GGK. Jika tidak terdapat GGK, maka suatu benda yang diberi gaya akan selalu melaju dan tidak akan berhenti karena tidak ada gaya gesek yang melambatkannnya, seperti di luar angkasa. Sama seperti GGS, nilai GGK merupakan hasil perkalian antara koefisien geseknya dengan gaya normal benda. Koefisien gesek kinetis dinotasikan dengan . Biasanya, nilai koefisien gesek kinetis selalu lebih kecil dari koefisien gesek statis untuk material yang sama. Persamaan GGK . . Contoh Soal Gaya Gesek dan Pembahasan Soal 1 Sebuah kotak seberat 10 kg ditarik sepanjang bidang datar dengan gaya sebesar 40 N yang membentuk sudut . Koefisien gesek statis dan kinetis nilainya berturut-turut sebesar 0,4 dan 0,3. Hitunglah percepatannya. Pembahasan Gambarkan terlebih dahulu gaya-gaya yang bekerja pada box tersebut. Perhatikan gambar dibawah ini. [Sumber Douglas C. Giancoli, 2005] Kemudian kita identifikasi komponen-komponen yang diketahui, . memiliki komponen vertikal dan horizontal . . Lalu, kita dapat mencari gaya normalnya yang dinotasikan dengan ataupun , . karena benda tidak bergerak secara vertikal, maka . . Agar kita mengetahui apakah benda tersebut dapat bergerak atau tidak, maka kita hitung nilai GGSnya . , maka benda bergerak. Kita tentukan GGK yang bekerja . Lalu, dapat kita cari percepatannya . . Jadi, percepatan yang dialami benda sebesar . Jika tidak terdapat gaya gesek, percepatannya pasti akan lebih besar. Soal 2 Perhatikan gambar dibawah. Koefisien gesek kinetis antara kotak A dengan meja nilainya sebesar 0,2. Tentukan percepatan sistem tersebut. [Sumber Douglas C. Giancoli, 2005] Pembahasan Berikut arah komponen-komponen gaya dari kedua benda, [Sumber Douglas C. Giancoli, 2005] Gaya normal kotak A sebesar . Gaya gesek kinetis yang bekerja pada kotak A sebesar . Gaya tegang tali dinotasikan dengan ataupun . Persamaan Hukum kedua Newton pada kotak A dapat ditullis dengan . Persamaan Hukum kedua Newton pada kotak B dapat ditulis dengan . disubstitusikan dengan persamaan kotak A . Kita dapat mencari nilai sebesar . . Jadi, percepatan yang dialami kotak A sebesar ke kanan dan kotak B ke bawah. Kita juga dapat mencari gaya tegang tali sebesar . Kontributor Ibadurrahman, Mahasiswa S2 Teknik Mesin UI Materi lainnya Gerak Parabola Gerak Lurus Beraturan Kapasitor
BKT6W.
  • mapp4ir4rs.pages.dev/462
  • mapp4ir4rs.pages.dev/3
  • mapp4ir4rs.pages.dev/201
  • mapp4ir4rs.pages.dev/320
  • mapp4ir4rs.pages.dev/462
  • mapp4ir4rs.pages.dev/441
  • mapp4ir4rs.pages.dev/213
  • mapp4ir4rs.pages.dev/185
  • jika gaya gesek diabaikan maka percepatan balok adalah